44 research outputs found

    Algebraic Distributed Space-Time Codes with Low ML Decoding Complexity

    Full text link
    "Extended Clifford algebras" are introduced as a means to obtain low ML decoding complexity space-time block codes. Using left regular matrix representations of two specific classes of extended Clifford algebras, two systematic algebraic constructions of full diversity Distributed Space-Time Codes (DSTCs) are provided for any power of two number of relays. The left regular matrix representation has been shown to naturally result in space-time codes meeting the additional constraints required for DSTCs. The DSTCs so constructed have the salient feature of reduced Maximum Likelihood (ML) decoding complexity. In particular, the ML decoding of these codes can be performed by applying the lattice decoder algorithm on a lattice of four times lesser dimension than what is required in general. Moreover these codes have a uniform distribution of power among the relays and in time, thus leading to a low Peak to Average Power Ratio at the relays.Comment: 5 pages, no figures. To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    STBCs from Representation of Extended Clifford Algebras

    Full text link
    A set of sufficient conditions to construct λ\lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for λ=2a,aN\lambda=2^a,a\in\mathbb{N} is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.Comment: 5 pages, no figures, To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    Noncoherent Low-Decoding-Complexity Space-Time Codes for Wireless Relay Networks

    Full text link
    The differential encoding/decoding setup introduced by Kiran et al, Oggier et al and Jing et al for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be used in the Jing-Hassibi protocol for cooperative diversity, the conditions that need to be satisfied by the relay matrices and the codebook are identified. A class of previously known rate one, full diversity, four-group encodable and four-group decodable Differential Space-Time Codes (DSTCs) is proposed for use as Distributed DSTCs (DDSTCs) in the proposed set up. To the best of our knowledge, this is the first known low decoding complexity DDSTC scheme for cooperative wireless networks.Comment: 5 pages, no figures. To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    MMSE Optimal Algebraic Space-Time Codes

    Full text link
    Design of Space-Time Block Codes (STBCs) for Maximum Likelihood (ML) reception has been predominantly the main focus of researchers. However, the ML decoding complexity of STBCs becomes prohibitive large as the number of transmit and receive antennas increase. Hence it is natural to resort to a suboptimal reception technique like linear Minimum Mean Squared Error (MMSE) receiver. Barbarossa et al and Liu et al have independently derived necessary and sufficient conditions for a full rate linear STBC to be MMSE optimal, i.e achieve least Symbol Error Rate (SER). Motivated by this problem, certain existing high rate STBC constructions from crossed product algebras are identified to be MMSE optimal. Also, it is shown that a certain class of codes from cyclic division algebras which are special cases of crossed product algebras are MMSE optimal. Hence, these STBCs achieve least SER when MMSE reception is employed and are fully diverse when ML reception is employed.Comment: 5 pages, 1 figure, journal version to appear in IEEE Transactions on Wireless Communications. Conference version appeared in NCC 2007, IIT Kanpur, Indi

    Algebraic Distributed Differential Space-Time Codes with Low Decoding Complexity

    Full text link
    The differential encoding/decoding setup introduced by Kiran et al, Oggier-Hassibi and Jing-Jafarkhani for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be usable in the Jing-Hassibi protocol for cooperative diversity, the conditions involving the relay matrices and the codebook that need to be satisfied are identified. Using the algebraic framework of extended Clifford algebras, a new class of Distributed Differential Space-Time Codes satisfying these conditions for power of two number of relays and also achieving full cooperative diversity with a low complexity sub-optimal receiver is proposed. Simulation results indicate that the proposed codes outperform both the cyclic codes as well as the circulant codes. Furthermore, these codes can also be applied as Differential Space-Time codes for non-coherent communication in classical point to point multiple antenna systems.Comment: To appear in IEEE Transactions on Wireless Communications. 10 pages, 5 figure

    Signal Set Design for Full-Diversity Low-Decoding-Complexity Differential Scaled-Unitary STBCs

    Full text link
    The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of gg-group encodable and gg-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.Comment: 5 pages, 2 figures. To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    OFDM based Distributed Space Time Coding for Asynchronous Relay Networks

    Full text link
    Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DSTBCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.Comment: 5 pages, 2 figures, to appear in IEEE International Conference on Communications, Beijing, China, May 19-23, 200

    A Non-Orthogonal Cooperative Multiple Access (NCMA) Protocol and Low ML Decoding Complexity Codes

    Full text link
    A half-duplex constrained Non-orthogonal Cooperative Multiple Access (NCMA) protocol suitable for transmission of information from N users to a single destination in a wireless fading channel is proposed. Transmission in this protocol comprises of a broadcast phase and a cooperation phase. In the broadcast phase, each user takes turn broadcasting its data to all other users and the destination in an orthogonal fashion in time. In the cooperation phase, each user transmits a linear function of what it received from all other users as well as its own data. In contrast to the orthogonal extension of cooperative relay protocols to the cooperative multiple access channels wherein at any point of time, only one user is considered as a source and all the other users behave as relays and do not transmit their own data, the NCMA protocol relaxes the orthogonality built into the protocols and hence allows for a more spectrally efficient usage of resources. Code design criteria for achieving full diversity of N in the NCMA protocol is derived using Pair Wise Error Probability (PEP) analysis and it is shown that this can be achieved with a minimum total time duration of 2N - 1 channel uses. Explicit construction of full diversity codes is then provided for arbitrary number of users. Since the maximum likelihood decoding complexity grows exponentially with the number of users, the notion of g-group decodable codes is introduced for the setup and a set of necessary and sufficient conditions is also obtained
    corecore